

Relatório Final

Título do projeto de pesquisa: Pesquisa para a obtenção de parafina "prilled" por

"spray cooling" para aplicação em grão sólidos combustíveis para foguetes de propulsão híbrida

Bolsista: Rubens Graciano de Campos Godoi.

Orientador(a): Márcio Yuji Nagamachi.

Período a que se refere o relatório: Janeiro de 2015 a Julho de 2015.

Resumo

O uso da parafina como componente principal de grãos combustíveis para motores-foguetes híbridos tem sido avaliado por recentes pesquisas, neste estudo um dos principais fatores que afetam a eficiência do grão combustível é o tamanho da partícula de parafina utilizada na mistura. O processo de spray chilling pode ser utilizado para o processo de atomização da parafina, porém este processo envolve uma grande quantidade de variáveis que influenciam o tamanho da partícula, relativas aos parâmetros do processo e características físicas do material atomizado.

1. Introdução

A técnica de *spray chilling*, também denominada *spray cooling* [1], é relativamente simples. Ela consiste na atomização do material fundido dentro de uma câmara na qual ar ou nitrogênio, à temperatura bem inferior à temperatura de fusão do material, são injetados de modo que provoquem a solidificação das partículas [2]. A Figura 1 representa um esquema de funcionamento do processo.

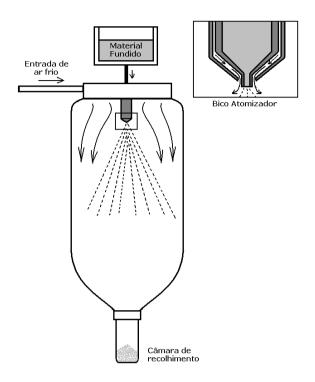


Figura 1 – Representação esquemática da técnica de spray chilling.

A técnica de spray chilling possui a vantagem de permitir o processamento de material sem a necessidade de uma fase aquosa ou a adição de solventes orgânicos. O tamanho das partículas pode ser facilmente ajustado através de parâmetros de operação do equipamento tais como: fluxo de material fundido e o fluxo de ar, tornando o processo altamente reprodutível [3]. Este trabalho tem como objetivo o estudo da influência dos parâmetros da atomização no diâmetro das partículas.

2.1 Materiais

- Parafina 170/190 (Petrobrás),
- Atomizador da marca Büchi modelo Mini Spray Dryer.
- Banho termostático.
- Granulômetro a laser modelo Mastersizer 2000 da Malvern.

2.2 Métodos

As partículas de parafina foram preparadas no atomizador da Büchi, acoplado a um banho termostático responsável por manter a agulha do atomizador aquecida a 120°C. O método de preparo das partículas foi o métodode spray chilling. A técnica de atomização depende de

diversas variáveis, dentre elas a fração mássica composta pela massa de ar divida pela massa de líquido (mA/mL) e a velocidade relativa (UR).

Para acompanhar as variáveis foi feita a calibração do aparelho para verificar a velocidade do ar na ponta do atomizador. A velocidade relativa pode ser variada através do ajuste de um rotâmetro que regula a vazão de ar do aparelho direcionada ao atomizador. A Figura 2 apresenta o gráfico de calibração, este gráfico relaciona a velocidade real do ar no bico do atomizador com a medição verificada no fluxômetro do aparelho.

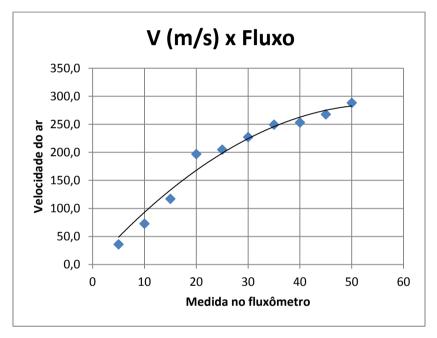


Figura 2 - Gráfico de calibração de velocidade do ar.

A fração mássica depende da vazão de ar do aparelho e da vazão de liquido no bico atomizador sendo dependente da entrada de ar no aparelho e de uma válvula que regula a saída de fluido para o atomizador. Para todas as amostras foi medida a vazão de fluido através do cálculo do volume de liquido utilizado pelo tempo. Foram preparadas amostras variando a rotação da válvula do liquido e do fluxômetro.

A distribuição do tamanho das partículas de parafina foi determinada por meio de um granulômetro a laser modelo Mastersizer 2000 da Malvern. Água destilada foi utilizada como agente dispersante e o índice de refração adotado foi de 1,446, sugerido pelo fabricante do equipamento para graxas de parafina. Todas as amostras foram feitas em triplicata.

3. Resultados

A técnica de cristalização por spray chilling consiste em atomizar parafina fundida dentro de uma câmara de spray dryer, na qual ar frio circula em seu interior. O ajuste do tamanho das partículas é feito através do ajuste da relação entre as vazões de ar comprimido e de parafina fundida. As partículas de parafina se formam com a cristalização das gotículas esféricas atomizadas em contato com o ar frio.

O diâmetro das partículas foi determinado por meio de um granulômetro a laser. Esta análise fornece como resultado uma distribuição de partículas. Foram feitas análises para todas as amostras em triplicata. Um dos resultados está representado na Figura 3.

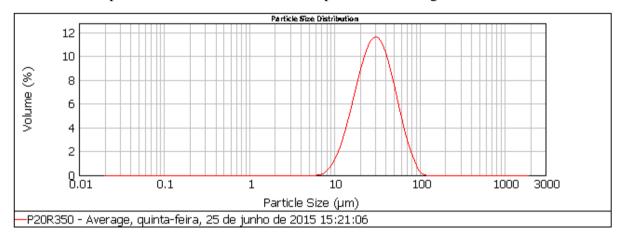


Figura 3 - Gráfico de distribuição de diâmetro de partículas fornecido pelo equipamento.

A distribuição de diâmetro de partículas é um gráfico do tipo Gaussiana o que é coerente com a literatura. Para a análise foi utilizado o valor médio da distribuição, que pode ser interpretado como o diâmetro em que as partículas estão em maior proporção.

A Tabela 1 apresenta os resultados de diâmetro médio de uma distribuição de diâmetro das partículas obtida por meio de um granulômetro a laser. A velocidade do ar foi variada a partir do fluxômetro do aparelho. Os valores de velocidade do ar foram obtidos a partir do gráfico de calibração.

Os valores de velocidade do liquido foram obtidos a partir das medições de tempo para cada amostra. Uma vez que o volume e a área de saída do liquido eram conhecidos foi possível calcular a velocidade de saída de fluido.

Tabela 1 – Resultados de distribuição de diâmetro da pertículas obtidas por spray chilling.

V ar (m/s)	V liq(m/s)	1ª Analise d[3,2] (μm)	2ª Analise d[3,2] (μm)	3ª Analise d[3,2] (μm)
196,812	0,290	24,58	24,949	24,686
196,812	4,835	25,904	25,785	26,374
196,812	7,193	25,833	27,832	23,838
227,094	4,015	12,451	12,176	13,691
227,094	3,779	26,59	29,036	27,983
227,094	12,937	24,362	23,421	26,704
253,094	6,551	18,568	16,797	17,05
253,094	15,202	21,22	20,507	20,694
253,094	18,195	21,034	19,939	26,704
288,162	7,281	18,392	19,212	16,753
288,162	13,397	15,462	17,001	18,445
288,162	14,796	17,301	18,056	18,479

A partir da tabela foi eleborado um gráfico que relaciona os diâmetros médios das partículas com velocidade do ar e do líquido. O gráfico está representado na Figura 3. O gráfico tem como eixo x as velocidades do líquido e no eixo y os valores de diâmetro médio de partículas. Os quatro conjuntos de pontos são referentes as velocidades do ar na saída do atomizador (em m/s).

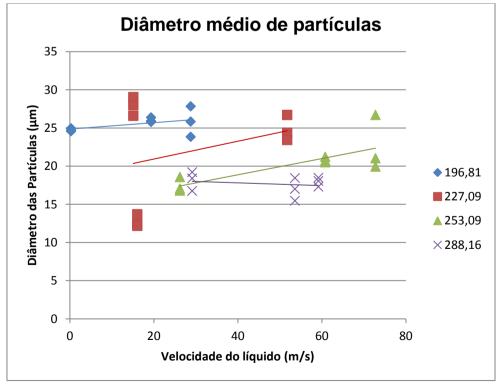


Figura 4 - Gráfico de diâmetro médio de partículas obtidas por spray chilling.

O gráfico permite visualizar que com o aumento da velocidade do líquido ocorre um aumento diâmetro médio das partículas. O oposto ocorre com a velocidade do ar, com o aumento da velocidade do ar ocorre a diminuição do diâmetro médio das partículas. Estes resultados são coerentes com os encontrados na literatura.

4. Conclusões

Os resultados de diâmetro foram coerentes com o esperado e o processo apresentou boa reprodutividade tanto na produção de partículas quanto na análise. O próximo passo para este projeto seria a análise de um número maior de amostras e a elaboração de um modelo matemático para descrever este processo.

Referências

[1] Passerini, N.; Qi, S.; Albertini, B.; Grassi, M.; Rodriguez, L.; Craig, D. 2010. Solid Lipid Microparticles Produced by Spray Congealing: Influence of the Atomizer on Microparticle Characteristics and Mathematical Modeling of the Drug Release. J Pharm Sci 99: 916-931.

[2] Matos Junior, F. E. Desenvolvimento, caracterização e aplicação de microcápsulas de acido ascórbico obtidas por spray chilling. (2013). 153 f. Dissertação (Mestrado) – Faculdade de Zootecnia e Engenharia de Alimetos, Universidade de São Paulo, Pirassununga, 2013.

[3]Maschke, A.; Becker, C.; Eyrich, D.; Kiermaier, J.; Blunk, T.; Gopferich, A.; Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur. J. Pharm. Biopharm. 65 (2007) 175–187.

[4] Shapiro, A. H.; The dynamics and thermodynamics of compressible fluid flow, v1, 1953.

[5] Lefebvre, A. H; Atomization and sprays, v1, 1989.